EconPapers    
Economics at your fingertips  
 

Reinforcement learning in market games

Edward Piotrowski (), Jan Sladkowski () and Anna Szczypinska

Papers from arXiv.org

Abstract: Financial markets investors are involved in many games -- they must interact with other agents to achieve their goals. Among them are those directly connected with their activity on markets but one cannot neglect other aspects that influence human decisions and their performance as investors. Distinguishing all subgames is usually beyond hope and resource consuming. In this paper we study how investors facing many different games, gather information and form their decision despite being unaware of the complete structure of the game. To this end we apply reinforcement learning methods to the Information Theory Model of Markets (ITMM). Following Mengel, we can try to distinguish a class $\Gamma$ of games and possible actions (strategies) $a^{i}_{m_{i}}$ for $i-$th agent. Any agent divides the whole class of games into analogy subclasses she/he thinks are analogous and therefore adopts the same strategy for a given subclass. The criteria for partitioning are based on profit and costs analysis. The analogy classes and strategies are updated at various stages through the process of learning. This line of research can be continued in various directions.

Date: 2007-09
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/0710.0114 Latest version (application/pdf)

Related works:
Working Paper: Reinforcement Learning in Market Games Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0710.0114

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:0710.0114