Forecasting with time-varying vector autoregressive models
Kostas Triantafyllopoulos ()
Papers from arXiv.org
Abstract:
The purpose of this paper is to propose a time-varying vector autoregressive model (TV-VAR) for forecasting multivariate time series. The model is casted into a state-space form that allows flexible description and analysis. The volatility covariance matrix of the time series is modelled via inverted Wishart and singular multivariate beta distributions allowing a fully conjugate Bayesian inference. Model performance and model comparison is done via the likelihood function, sequential Bayes factors, the mean of squared standardized forecast errors, the mean of absolute forecast errors (known also as mean absolute deviation), and the mean forecast error. Bayes factors are also used in order to choose the autoregressive order of the model. Multi-step forecasting is discussed in detail and a flexible formula is proposed to approximate the forecast function. Two examples, consisting of bivariate data of IBM shares and of foreign exchange (FX) rates for 8 currencies, illustrate the methods. For the IBM data we discuss model performance and multi-step forecasting in some detail. For the FX data we discuss sequential portfolio allocation; for both data sets our empirical findings suggest that the TV-VAR models outperform the widely used VAR models.
Date: 2008-02, Revised 2008-02
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/0802.0220 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0802.0220
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().