The numeraire portfolio in semimartingale financial models
Ioannis Karatzas and
Constantinos Kardaras
Papers from arXiv.org
Abstract:
We study the existence of the numeraire portfolio under predictable convex constraints in a general semimartingale model of a financial market. The numeraire portfolio generates a wealth process, with respect to which the relative wealth processes of all other portfolios are supermartingales. Necessary and sufficient conditions for the existence of the numeraire portfolio are obtained in terms of the triplet of predictable characteristics of the asset price process. This characterization is then used to obtain further necessary and sufficient conditions, in terms of a no-free-lunch-type notion. In particular, the full strength of the "No Free Lunch with Vanishing Risk" (NFLVR) is not needed, only the weaker "No Unbounded Profit with Bounded Risk" (NUPBR) condition that involves the boundedness in probability of the terminal values of wealth processes. We show that this notion is the minimal a-priori assumption required in order to proceed with utility optimization. The fact that it is expressed entirely in terms of predictable characteristics makes it easy to check, something that the stronger NFLVR condition lacks.
Date: 2008-03
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/0803.1877 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0803.1877
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().