Transformation methods for evaluating approximations to the optimal exercise boundary for linear and nonlinear Black-Scholes equations
Daniel Sevcovic
Papers from arXiv.org
Abstract:
The purpose of this survey chapter is to present a transformation technique that can be used in analysis and numerical computation of the early exercise boundary for an American style of vanilla options that can be modelled by class of generalized Black-Scholes equations. We analyze qualitatively and quantitatively the early exercise boundary for a linear as well as a class of nonlinear Black-Scholes equations with a volatility coefficient which can be a nonlinear function of the second derivative of the option price itself. A motivation for studying the nonlinear Black-Scholes equation with a nonlinear volatility arises from option pricing models taking into account e.g. nontrivial transaction costs, investor's preferences, feedback and illiquid markets effects and risk from a volatile (unprotected) portfolio. We present a method how to transform the free boundary problem for the early exercise boundary position into a solution of a time depending nonlinear nonlocal parabolic equation defined on a fixed domain. We furthermore propose an iterative numerical scheme that can be used in order to find an approximation of the free boundary. In the case of a linear Black-Scholes equation we are able to derive a nonlinear integral equation for the position of the free boundary. We present results of numerical approximation of the early exercise boundary for various types of linear and nonlinear Black-Scholes equations and we discuss dependence of the free boundary on model parameters. Finally, we discuss an application of the transformation method for the pricing equation for American type of Asian options.
Date: 2008-05
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/0805.0611 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0805.0611
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().