Clustering of discretely observed diffusion processes
Alessandro De Gregorio and
Stefano Iacus ()
Papers from arXiv.org
Abstract:
In this paper a new dissimilarity measure to identify groups of assets dynamics is proposed. The underlying generating process is assumed to be a diffusion process solution of stochastic differential equations and observed at discrete time. The mesh of observations is not required to shrink to zero. As distance between two observed paths, the quadratic distance of the corresponding estimated Markov operators is considered. Analysis of both synthetic data and real financial data from NYSE/NASDAQ stocks, give evidence that this distance seems capable to catch differences in both the drift and diffusion coefficients contrary to other commonly used metrics.
Date: 2008-09
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/0809.3902 Latest version (application/pdf)
Related works:
Journal Article: Clustering of discretely observed diffusion processes (2010) 
Working Paper: Clustering of discretely observed diffusion processes (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0809.3902
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().