EconPapers    
Economics at your fingertips  
 

State-dependent utility maximization in L\'evy markets

Jose E. Figueroa-Lopez and Jin Ma

Papers from arXiv.org

Abstract: We revisit Merton's portfolio optimization problem under boun-ded state-dependent utility functions, in a market driven by a L\'evy process $Z$ extending results by Karatzas et. al. (1991) and Kunita (2003). The problem is solved using a dual variational problem as it is customarily done for non-Markovian models. One of the main features here is that the domain of the dual problem enjoys an explicit "parametrization", built on a multiplicative optional decomposition for nonnegative supermartingales due to F\"ollmer and Kramkov (1997). As a key step in obtaining the representation result we prove a closure property for integrals with respect to Poisson random measures, a result of interest on its own that extends the analog property for integrals with respect to a fixed semimartingale due to M\'emin (1980). In the case that (i) the L\'evy measure of $Z$ is atomic with a finite number of atoms or that (ii) $\Delta S_{t}/S_{t^{-}}=\zeta_{t} \vartheta(\Delta Z_{t})$ for a process $\zeta$ and a deterministic function $\vartheta$, we explicitly characterize the admissible trading strategies and show that the dual solution is a risk-neutral local martingale.

Date: 2009-01
New Economics Papers: this item is included in nep-upt
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/0901.2070 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0901.2070

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:0901.2070