EconPapers    
Economics at your fingertips  
 

On Az\'ema-Yor processes, their optimal properties and the Bachelier-drawdown equation

Laurent Carraro, Nicole El Karoui and Jan Ob{\l}\'oj

Papers from arXiv.org

Abstract: We study the class of Az\'ema-Yor processes defined from a general semimartingale with a continuous running maximum process. We show that they arise as unique strong solutions of the Bachelier stochastic differential equation which we prove is equivalent to the drawdown equation. Solutions of the latter have the drawdown property: they always stay above a given function of their past maximum. We then show that any process which satisfies the drawdown property is in fact an Az\'ema-Yor process. The proofs exploit group structure of the set of Az\'ema-Yor processes, indexed by functions, which we introduce. We investigate in detail Az\'ema-Yor martingales defined from a nonnegative local martingale converging to zero at infinity. We establish relations between average value at risk, drawdown function, Hardy-Littlewood transform and its inverse. In particular, we construct Az\'ema-Yor martingales with a given terminal law and this allows us to rediscover the Az\'ema-Yor solution to the Skorokhod embedding problem. Finally, we characterize Az\'ema-Yor martingales showing they are optimal relative to the concave ordering of terminal variables among martingales whose maximum dominates stochastically a given benchmark.

Date: 2009-02, Revised 2012-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Published in Annals of Probability 2012, Vol. 40, No. 1, 372-400

Downloads: (external link)
http://arxiv.org/pdf/0902.1328 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0902.1328

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:0902.1328