EconPapers    
Economics at your fingertips  
 

Quantum Neural Computation for Option Price Modelling

Vladimir G. Ivancevic

Papers from arXiv.org

Abstract: We propose a new cognitive framework for option price modelling, using quantum neural computation formalism. Briefly, when we apply a classical nonlinear neural-network learning to a linear quantum Schr\"odinger equation, as a result we get a nonlinear Schr\"odinger equation (NLS), performing as a quantum stochastic filter. In this paper, we present a bidirectional quantum associative memory model for the Black--Scholes--like option price evolution, consisting of a pair of coupled NLS equations, one governing the stochastic volatility and the other governing the option price, both self-organizing in an adaptive `market heat potential', trained by continuous Hebbian learning. This stiff pair of NLS equations is numerically solved using the method of lines with adaptive step-size integrator. Keywords: Option price modelling, Quantum neural computation, nonlinear Schr\"odinger equations, leverage effect, bidirectional associative memory

Date: 2009-03, Revised 2009-03
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/0903.0680 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0903.0680

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:0903.0680