EconPapers    
Economics at your fingertips  
 

Inference on multivariate ARCH processes with large sizes

Gilles Zumbach

Papers from arXiv.org

Abstract: The covariance matrix is formulated in the framework of a linear multivariate ARCH process with long memory, where the natural cross product structure of the covariance is generalized by adding two linear terms with their respective parameter. The residuals of the linear ARCH process are computed using historical data and the (inverse square root of the) covariance matrix. Simple measure of qualities assessing the independence and unit magnitude of the residual distributions are proposed. The salient properties of the computed residuals are studied for three data sets of size 54, 55 and 330. Both new terms introduced in the covariance help in producing uncorrelated residuals, but the residual magnitudes are very different from unity. The large sizes of the inferred residuals are due to the limited information that can be extracted from the empirical data when the number of time series is large, and denotes a fundamental limitation to the inference that can be achieved.

Date: 2009-03
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/0903.1531 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0903.1531

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:0903.1531