EconPapers    
Economics at your fingertips  
 

Universal Correlations and Power-Law Tails in Financial Covariance Matrices

Gernot Akemann, Jonit Fischmann and Pierpaolo Vivo

Papers from arXiv.org

Abstract: Signatures of universality are detected by comparing individual eigenvalue distributions and level spacings from financial covariance matrices to random matrix predictions. A chopping procedure is devised in order to produce a statistical ensemble of asset-price covariances from a single instance of financial data sets. Local results for the smallest eigenvalue and individual spacings are very stable upon reshuffling the time windows and assets. They are in good agreement with the universal Tracy-Widom distribution and Wigner surmise, respectively. This suggests a strong degree of robustness especially in the low-lying sector of the spectra, most relevant for portfolio selections. Conversely, the global spectral density of a single covariance matrix as well as the average over all unfolded nearest-neighbour spacing distributions deviate from standard Gaussian random matrix predictions. The data are in fair agreement with a recently introduced generalised random matrix model, with correlations showing a power-law decay.

Date: 2009-06
References: Add references at CitEc
Citations:

Published in Physica A 389 (2010) 2566-2579

Downloads: (external link)
http://arxiv.org/pdf/0906.5249 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0906.5249

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:0906.5249