EconPapers    
Economics at your fingertips  
 

Gauge Invariance, Geometry and Arbitrage

Samuel E. Vazquez and Simone Farinelli

Papers from arXiv.org

Abstract: In this work, we identify the most general measure of arbitrage for any market model governed by It\^o processes. We show that our arbitrage measure is invariant under changes of num\'{e}raire and equivalent probability. Moreover, such measure has a geometrical interpretation as a gauge connection. The connection has zero curvature if and only if there is no arbitrage. We prove an extension of the Martingale pricing theorem in the case of arbitrage. In our case, the present value of any traded asset is given by the expectation of future cash-flows discounted by a line integral of the gauge connection. We develop simple strategies to measure arbitrage using both simulated and real market data. We find that, within our limited data sample, the market is efficient at time horizons of one day or longer. However, we provide strong evidence for non-zero arbitrage in high frequency intraday data. Such events seem to have a decay time of the order of one minute.

Date: 2009-08
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/0908.3043 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0908.3043

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:0908.3043