EconPapers    
Economics at your fingertips  
 

On the rates of convergence of simulation based optimization algorithms for optimal stopping problems

Denis Belomestny

Papers from arXiv.org

Abstract: In this paper we study simulation based optimization algorithms for solving discrete time optimal stopping problems. This type of algorithms became popular among practioneers working in the area of quantitative finance. Using large deviation theory for the increments of empirical processes, we derive optimal convergence rates and show that they can not be improved in general. The rates derived provide a guide to the choice of the number of simulated paths needed in optimization step, which is crucial for the good performance of any simulation based optimization algorithm. Finally, we present a numerical example of solving optimal stopping problem arising in option pricing that illustrates our theoretical findings.

Date: 2009-09
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/0909.3570 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0909.3570

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:0909.3570