Arbitrage Bounds for Prices of Weighted Variance Swaps
Mark H. A. Davis,
Jan Obloj and
Vimal Raval
Papers from arXiv.org
Abstract:
We develop robust pricing and hedging of a weighted variance swap when market prices for a finite number of co--maturing put options are given. We assume the given prices do not admit arbitrage and deduce no-arbitrage bounds on the weighted variance swap along with super- and sub- replicating strategies which enforce them. We find that market quotes for variance swaps are surprisingly close to the model-free lower bounds we determine. We solve the problem by transforming it into an analogous question for a European option with a convex payoff. The lower bound becomes a problem in semi-infinite linear programming which we solve in detail. The upper bound is explicit. We work in a model-independent and probability-free setup. In particular we use and extend F\"ollmer's pathwise stochastic calculus. Appropriate notions of arbitrage and admissibility are introduced. This allows us to establish the usual hedging relation between the variance swap and the 'log contract' and similar connections for weighted variance swaps. Our results take form of a FTAP: we show that the absence of (weak) arbitrage is equivalent to the existence of a classical model which reproduces the observed prices via risk-neutral expectations of discounted payoffs.
Date: 2010-01, Revised 2012-09
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1001.2678 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1001.2678
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().