Reflected Backward Stochastic Difference Equations with Finite State and their applications
Lifen An and
Shaolin Ji
Papers from arXiv.org
Abstract:
In this paper, we first establish the reflected backward stochastic difference equations with finite state (FS-RBSDEs for short). Then we explore the Existence and Uniqueness Theorem as well as the Comparison Theorem by "one step" method. The connections between FS-RBSDEs and optimal stopping time problems are investigated and we also show that the optimal stopping problems with multiple priors under Knightian uncertainty is a special case of our FS-RBSDEs. As a byproduct we develop the general theory of g-martingales in discrete time with finite state including Doob-Mayer Decomposition Theorem and Optional Sampling Theorem. Finally, we consider the pricing models of American Option in both complete and incomplete markets.
Date: 2010-01, Revised 2012-12
New Economics Papers: this item is included in nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1001.3054 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1001.3054
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().