EconPapers    
Economics at your fingertips  
 

Martingale representation for Poisson processes with applications to minimal variance hedging

Guenter Last and Mathew D. Penrose

Papers from arXiv.org

Abstract: We consider a Poisson process $\eta$ on a measurable space $(\BY,\mathcal{Y})$ equipped with a partial ordering, assumed to be strict almost everwhwere with respect to the intensity measure $\lambda$ of $\eta$. We give a Clark-Ocone type formula providing an explicit representation of square integrable martingales (defined with respect to the natural filtration associated with $\eta$), which was previously known only in the special case, when $\lambda$ is the product of Lebesgue measure on $\R_+$ and a $\sigma$-finite measure on another space $\BX$. Our proof is new and based on only a few basic properties of Poisson processes and stochastic integrals. We also consider the more general case of an independent random measure in the sense of It\^o of pure jump type and show that the Clark-Ocone type representation leads to an explicit version of the Kunita-Watanabe decomposition of square integrable martingales. We also find the explicit minimal variance hedge in a quite general financial market driven by an independent random measure.

Date: 2010-01
New Economics Papers: this item is included in nep-mic
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1001.3972 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1001.3972

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1001.3972