EconPapers    
Economics at your fingertips  
 

A Direct Proof of the Bichteler--Dellacherie Theorem and Connections to Arbitrage

Mathias Beiglb\"ock, Walter Schachermayer and Bezirgen Veliyev

Papers from arXiv.org

Abstract: We give an elementary proof of the celebrated Bichteler-Dellacherie Theorem which states that the class of stochastic processes $S$ allowing for a useful integration theory consists precisely of those processes which can be written in the form $S=M+A$, where $M$ is a local martingale and $A$ is a finite variation process. In other words, $S$ is a good integrator if and only if it is a semi-martingale. We obtain this decomposition rather directly from an elementary discrete-time Doob-Meyer decomposition. By passing to convex combinations we obtain a direct construction of the continuous time decomposition, which then yields the desired decomposition. As a by-product of our proof we obtain a characterization of semi-martingales in terms of a variant of \emph{no free lunch}, thus extending a result from [DeSc94].

Date: 2010-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://arxiv.org/pdf/1004.5559 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1004.5559

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-24
Handle: RePEc:arx:papers:1004.5559