A Note on Sparse Minimum Variance Portfolios and Coordinate-Wise Descent Algorithms
Yu-Min Yen
Papers from arXiv.org
Abstract:
In this short report, we discuss how coordinate-wise descent algorithms can be used to solve minimum variance portfolio (MVP) problems in which the portfolio weights are constrained by $l_{q}$ norms, where $1\leq q \leq 2$. A portfolio which weights are regularised by such norms is called a sparse portfolio (Brodie et al.), since these constraints facilitate sparsity (zero components) of the weight vector. We first consider a case when the portfolio weights are regularised by a weighted $l_{1}$ and squared $l_{2}$ norm. Then two benchmark data sets (Fama and French 48 industries and 100 size and BM ratio portfolios) are used to examine performances of the sparse portfolios. When the sample size is not relatively large to the number of assets, sparse portfolios tend to have lower out-of-sample portfolio variances, turnover rates, active assets, short-sale positions, but higher Sharpe ratios than the unregularised MVP. We then show some possible extensions; particularly we derive an efficient algorithm for solving an MVP problem in which assets are allowed to be chosen grouply.
Date: 2010-05, Revised 2013-09
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1005.5082 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1005.5082
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().