EconPapers    
Economics at your fingertips  
 

Investigating Causal Relationships in Stock Returns with Temporal Logic Based Methods

Samantha Kleinberg, Petter N. Kolm and Bud Mishra

Papers from arXiv.org

Abstract: We describe a new framework for causal inference and its application to return time series. In this system, causal relationships are represented as logical formulas, allowing us to test arbitrarily complex hypotheses in a computationally efficient way. We simulate return time series using a common factor model, and show that on this data the method described significantly outperforms Granger causality (a primary approach to this type of problem). Finally we apply the method to real return data, showing that the method can discover novel relationships between stocks. The approach described is a general one that will allow combination of price and volume data with qualitative information at varying time scales (from interest rate announcements, to earnings reports to news stories) shedding light on some of the previously invisible common causes of seemingly correlated price movements.

Date: 2010-06
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1006.1791 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1006.1791

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1006.1791