EconPapers    
Economics at your fingertips  
 

Strategic Insights From Playing the Quantum Tic-Tac-Toe

J. N. Leaw and S. A. Cheong

Papers from arXiv.org

Abstract: In this paper, we perform a minimalistic quantization of the classical game of tic-tac-toe, by allowing superpositions of classical moves. In order for the quantum game to reduce properly to the classical game, we require legal quantum moves to be orthogonal to all previous moves. We also admit interference effects, by squaring the sum of amplitudes over all moves by a player to compute his or her occupation level of a given site. A player wins when the sums of occupations along any of the eight straight lines we can draw in the $3 \times 3$ grid is greater than three. We play the quantum tic-tac-toe first randomly, and then deterministically, to explore the impact different opening moves, end games, and different combinations of offensive and defensive strategies have on the outcome of the game. In contrast to the classical tic-tac-toe, the deterministic quantum game does not always end in a draw. In contrast also to most classical two-player games of no chance, it is possible for Player 2 to win. More interestingly, we find that Player 1 enjoys an overwhelming quantum advantage when he opens with a quantum move, but loses this advantage when he opens with a classical move. We also find the quantum blocking move, which consists of a weighted superposition of moves that the opponent could use to win the game, to be very effective in denying the opponent his or her victory. We then speculate what implications these results might have on quantum information transfer and portfolio optimization.

Date: 2010-07
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Published in Journal of Physics A: Mathematical and Theoretical, vol. 43, no. 45, 455304, 2010

Downloads: (external link)
http://arxiv.org/pdf/1007.3601 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1007.3601

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1007.3601