EconPapers    
Economics at your fingertips  
 

An algorithmic information-theoretic approach to the behaviour of financial markets

Hector Zenil and Jean-Paul Delahaye

Papers from arXiv.org

Abstract: Using frequency distributions of daily closing price time series of several financial market indexes, we investigate whether the bias away from an equiprobable sequence distribution found in the data, predicted by algorithmic information theory, may account for some of the deviation of financial markets from log-normal, and if so for how much of said deviation and over what sequence lengths. We do so by comparing the distributions of binary sequences from actual time series of financial markets and series built up from purely algorithmic means. Our discussion is a starting point for a further investigation of the market as a rule-based system with an 'algorithmic' component, despite its apparent randomness, and the use of the theory of algorithmic probability with new tools that can be applied to the study of the market price phenomenon. The main discussion is cast in terms of assumptions common to areas of economics in agreement with an algorithmic view of the market.

Date: 2010-08, Revised 2010-08
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1008.1846 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1008.1846

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1008.1846