Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with L\'evy jumps
J. E. Figueroa-L\'opez,
R. Gong and
C. Houdr\'e
Papers from arXiv.org
Abstract:
We consider a stochastic volatility model with L\'evy jumps for a log-return process $Z=(Z_{t})_{t\geq 0}$ of the form $Z=U+X$, where $U=(U_{t})_{t\geq 0}$ is a classical stochastic volatility process and $X=(X_{t})_{t\geq 0}$ is an independent L\'evy process with absolutely continuous L\'evy measure $\nu$. Small-time expansions, of arbitrary polynomial order, in time-$t$, are obtained for the tails $\bbp(Z_{t}\geq z)$, $z>0$, and for the call-option prices $\bbe(e^{z+Z_{t}}-1)_{+}$, $z\neq 0$, assuming smoothness conditions on the {\PaleGrey density of $\nu$} away from the origin and a small-time large deviation principle on $U$. Our approach allows for a unified treatment of general payoff functions of the form $\phi(x){\bf 1}_{x\geq{}z}$ for smooth functions $\phi$ and $z>0$. As a consequence of our tail expansions, the polynomial expansions in $t$ of the transition densities $f_{t}$ are also {\Green obtained} under mild conditions.
Date: 2010-09, Revised 2012-02
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1009.4211 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1009.4211
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().