On the Stability of Utility Maximization Problems
Erhan Bayraktar and
Ross Kravitz
Papers from arXiv.org
Abstract:
In this paper we extend the stability results of [4]}. Our utility maximization problem is defined as an essential supremum of conditional expectations of the terminal values of wealth processes, conditioned on the filtration at the stopping time $\tau$. To establish our results, we extend the classical results of convex analysis to maps from $L^0$ to $L^0$. The notion of convex compactness introduced in [7] plays an important role in our analysis.
Date: 2010-10, Revised 2011-03
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1010.4322 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1010.4322
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().