EconPapers    
Economics at your fingertips  
 

Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain

Alexandre Belloni, Daniel Chen, Victor Chernozhukov and Christian Hansen

Papers from arXiv.org

Abstract: We develop results for the use of Lasso and Post-Lasso methods to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, $p$. Our results apply even when $p$ is much larger than the sample size, $n$. We show that the IV estimator based on using Lasso or Post-Lasso in the first stage is root-n consistent and asymptotically normal when the first-stage is approximately sparse; i.e. when the conditional expectation of the endogenous variables given the instruments can be well-approximated by a relatively small set of variables whose identities may be unknown. We also show the estimator is semi-parametrically efficient when the structural error is homoscedastic. Notably our results allow for imperfect model selection, and do not rely upon the unrealistic "beta-min" conditions that are widely used to establish validity of inference following model selection. In simulation experiments, the Lasso-based IV estimator with a data-driven penalty performs well compared to recently advocated many-instrument-robust procedures. In an empirical example dealing with the effect of judicial eminent domain decisions on economic outcomes, the Lasso-based IV estimator outperforms an intuitive benchmark. In developing the IV results, we establish a series of new results for Lasso and Post-Lasso estimators of nonparametric conditional expectation functions which are of independent theoretical and practical interest. We construct a modification of Lasso designed to deal with non-Gaussian, heteroscedastic disturbances which uses a data-weighted $\ell_1$-penalty function. Using moderate deviation theory for self-normalized sums, we provide convergence rates for the resulting Lasso and Post-Lasso estimators that are as sharp as the corresponding rates in the homoscedastic Gaussian case under the condition that $\log p = o(n^{1/3})$.

Date: 2010-10, Revised 2015-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Published in Econometrica 80, no. 6 (2012): 2369-2429

Downloads: (external link)
http://arxiv.org/pdf/1010.4345 Latest version (application/pdf)

Related works:
Journal Article: Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain (2012) Downloads
Working Paper: Sparse models and methods for optimal instruments with an application to eminent domain (2010) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1010.4345

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-29
Handle: RePEc:arx:papers:1010.4345