Robust Estimation of Operational Risk
Nataliya Horbenko,
Peter Ruckdeschel and
Taehan Bae
Papers from arXiv.org
Abstract:
According to the Loss Distribution Approach, the operational risk of a bank is determined as 99.9% quantile of the respective loss distribution, covering unexpected severe events. The 99.9% quantile can be considered a tail event. As supported by the Pickands-Balkema-de Haan Theorem, tail events exceeding some high threshold are usually modeled by a Generalized Pareto Distribution (GPD). Estimation of GPD tail quantiles is not a trivial task, in particular if one takes into account the heavy tails of this distribution, the possibility of singular outliers, and, moreover, the fact that data is usually pooled among several sources. Moreover, if, as is frequently the case, operational losses are pooled anonymously, relevance of the fitting data for the respective bank is not self-evident. In such situations, robust methods may provide stable estimates when classical methods already fail. In this paper, optimally-robust procedures MBRE, OMSE, RMXE are introduced to the application domain of operational risk. We apply these procedures to parameter estimation of a GPD at data from Algorithmics Inc. To better understand these results, we provide supportive diagnostic plots adjusted for this context: influence plots, outlyingness plots, and QQ plots with robust confidence bands.
Date: 2010-12, Revised 2011-03
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1012.0249 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1012.0249
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().