EconPapers    
Economics at your fingertips  
 

Modeling microstructure noise with mutually exciting point processes

E. Bacry, S. Delattre, Marc Hoffmann () and J. F. Muzy

Papers from arXiv.org

Abstract: We introduce a new stochastic model for the variations of asset prices at the tick-by-tick level in dimension 1 (for a single asset) and 2 (for a pair of assets). The construction is based on marked point processes and relies on linear self and mutually exciting stochastic intensities as introduced by Hawkes. We associate a counting process with the positive and negative jumps of an asset price. By coupling suitably the stochastic intensities of upward and downward changes of prices for several assets simultaneously, we can reproduce microstructure noise (i.e. strong microscopic mean reversion at the level of seconds to a few minutes) and the Epps effect (i.e. the decorrelation of the increments in microscopic scales) while preserving a standard Brownian diffusion behaviour on large scales. More effectively, we obtain analytical closed-form formulae for the mean signature plot and the correlation of two price increments that enable to track across scales the effect of the mean-reversion up to the diffusive limit of the model. We show that the theoretical results are consistent with empirical fits on futures Euro-Bund and Euro-Bobl in several situations.

Date: 2011-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://arxiv.org/pdf/1101.3422 Latest version (application/pdf)

Related works:
Journal Article: Modelling microstructure noise with mutually exciting point processes (2013) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1101.3422

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:1101.3422