Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model
Mark Davis and
Sebastien Lleo
Papers from arXiv.org
Abstract:
In this article we extend earlier work on the jump-diffusion risk-sensitive asset management problem [SIAM J. Fin. Math. (2011) 22-54] by allowing jumps in both the factor process and the asset prices, as well as stochastic volatility and investment constraints. In this case, the HJB equation is a partial integro-differential equation (PIDE). By combining viscosity solutions with a change of notation, a policy improvement argument and classical results on parabolic PDEs we prove that the HJB PIDE admits a unique smooth solution. A verification theorem concludes the resolution of this problem.
Date: 2011-02, Revised 2012-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1102.5126 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1102.5126
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().