EconPapers    
Economics at your fingertips  
 

Hedging of Game Options With the Presence of Transaction Costs

Yan Dolinsky

Papers from arXiv.org

Abstract: We study the problem of super-replication for game options under proportional transaction costs. We consider a multidimensional continuous time model, in which the discounted stock price process satisfies the conditional full support property. We show that the super-replication price is the cheapest cost of a trivial super-replication strategy. This result is an extension of previous papers (see [3] and [7]) which considered only European options. In these papers the authors showed that with the presence of proportional transaction costs the super--replication price of a European option is given in terms of the concave envelope of the payoff function. In the present work we prove that for game options the super-replication price is given by a game variant analog of the standard concave envelope term. The treatment of game options is more complicated and requires additional tools. We combine the theory of consistent price systems together with the theory of extended weak convergence which was developed in [1]. The second theory is essential in dealing with hedging which involves stopping times, like in the case of game options.

Date: 2011-03, Revised 2012-03
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1103.1165 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1103.1165

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1103.1165