EconPapers    
Economics at your fingertips  
 

On the drawdown of completely asymmetric Levy processes

Aleksandar Mijatovic and Martijn R. Pistorius

Papers from arXiv.org

Abstract: The {\em drawdown} process $Y$ of a completely asymmetric L\'{e}vy process $X$ is equal to $X$ reflected at its running supremum $\bar{X}$: $Y = \bar{X} - X$. In this paper we explicitly express in terms of the scale function and the L\'{e}vy measure of $X$ the law of the sextuple of the first-passage time of $Y$ over the level $a>0$, the time $\bar{G}_{\tau_a}$ of the last supremum of $X$ prior to $\tau_a$, the infimum $\unl X_{\tau_a}$ and supremum $\ovl X_{\tau_a}$ of $X$ at $\tau_a$ and the undershoot $a - Y_{\tau_a-}$ and overshoot $Y_{\tau_a}-a$ of $Y$ at $\tau_a$. As application we obtain explicit expressions for the laws of a number of functionals of drawdowns and rallies in a completely asymmetric exponential L\'{e}vy model.

Date: 2011-03, Revised 2012-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://arxiv.org/pdf/1103.1460 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1103.1460

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1103.1460