Convex order of discrete, continuous and predictable quadratic variation & applications to options on variance
Martin Keller-Ressel and
Claus Griessler
Papers from arXiv.org
Abstract:
We consider a square-integrable semimartingale and investigate the convex order relations between its discrete, continuous and predictable quadratic variation. As the main results, we show that if the semimartingale has conditionally independent increments and symmetric jump measure, then its discrete realized variance dominates its quadratic variation in increasing convex order. The results have immediate applications to the pricing of options on realized variance. For a class of models including time-changed Levy models and Sato processes with symmetric jumps our results show that options on variance are typically underpriced, if quadratic variation is substituted for the discretely sampled realized variance.
Date: 2011-03, Revised 2012-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1103.2310 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1103.2310
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).