A Note on Delta Hedging in Markets with Jumps
Aleksandar Mijatovi\'c and
Mikhail Urusov
Papers from arXiv.org
Abstract:
Modelling stock prices via jump processes is common in financial markets. In practice, to hedge a contingent claim one typically uses the so-called delta-hedging strategy. This strategy stems from the Black--Merton--Scholes model where it perfectly replicates contingent claims. From the theoretical viewpoint, there is no reason for this to hold in models with jumps. However in practice the delta-hedging strategy is widely used and its potential shortcoming in models with jumps is disregarded since such models are typically incomplete and hence most contingent claims are non-attainable. In this note we investigate a complete model with jumps where the delta-hedging strategy is well-defined for regular payoff functions and is uniquely determined via the risk-neutral measure. In this setting we give examples of (admissible) delta-hedging strategies with bounded discounted value processes, which nevertheless fail to replicate the respective bounded contingent claims. This demonstrates that the deficiency of the delta-hedging strategy in the presence of jumps is not due to the incompleteness of the model but is inherent in the discontinuity of the trajectories.
Date: 2011-03
New Economics Papers: this item is included in nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1103.4965 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1103.4965
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().