Asymptotic Expansion for the Normal Implied Volatility in Local Volatility Models
Viorel Costeanu and
Dan Pirjol
Papers from arXiv.org
Abstract:
We study the dynamics of the normal implied volatility in a local volatility model, using a small-time expansion in powers of maturity T. At leading order in this expansion, the asymptotics of the normal implied volatility is similar, up to a different definition of the moneyness, to that of the log-normal volatility. This relation is preserved also to order O(T) in the small-time expansion, and differences with the log-normal case appear first at O(T^2). The results are illustrated on a few examples of local volatility models with analytical local volatility, finding generally good agreement with exact or numerical solutions. We point out that the asymptotic expansion can fail if applied naively for models with nonanalytical local volatility, for example which have discontinuous derivatives. Using perturbation theory methods, we show that the ATM normal implied volatility for such a model contains a term ~ \sqrt{T}, with a coefficient which is proportional with the jump of the derivative.
Date: 2011-05
New Economics Papers: this item is included in nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1105.3359 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1105.3359
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().