EconPapers    
Economics at your fingertips  
 

Adjoints and Automatic (Algorithmic) Differentiation in Computational Finance

Cristian Homescu

Papers from arXiv.org

Abstract: Two of the most important areas in computational finance: Greeks and, respectively, calibration, are based on efficient and accurate computation of a large number of sensitivities. This paper gives an overview of adjoint and automatic differentiation (AD), also known as algorithmic differentiation, techniques to calculate these sensitivities. When compared to finite difference approximation, this approach can potentially reduce the computational cost by several orders of magnitude, with sensitivities accurate up to machine precision. Examples and a literature survey are also provided.

Date: 2011-07
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/1107.1831 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1107.1831

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1107.1831