Investment/consumption problem in illiquid markets with regime-switching
Paul Gassiat,
Fausto Gozzi and
Huy\^en Pham
Papers from arXiv.org
Abstract:
We consider an illiquid financial market with different regimes modeled by a continuous-time finite-state Markov chain. The investor can trade a stock only at the discrete arrival times of a Cox process with intensity depending on the market regime. Moreover, the risky asset price is subject to liquidity shocks, which change its rate of return and volatility, and induce jumps on its dynamics. In this setting, we study the problem of an economic agent optimizing her expected utility from consumption under a non-bankruptcy constraint. By using the dynamic programming method, we provide the characterization of the value function of this stochastic control problem in terms of the unique viscosity solution to a system of integro-partial differential equations. We next focus on the popular case of CRRA utility functions, for which we can prove smoothness $C^2$ results for the value function. As an important byproduct, this allows us to get the existence of optimal investment/consumption strategies characterized in feedback forms. We analyze a convergent numerical scheme for the resolution to our stochastic control problem, and we illustrate finally with some numerical experiments the effects of liquidity regimes in the investor's optimal decision.
Date: 2011-07, Revised 2012-04
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1107.4210 Latest version (application/pdf)
Related works:
Working Paper: Investment/consumption problem in illiquid markets with regimes switching (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1107.4210
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().