Convex risk measures for good deal bounds
Takuji Arai and
Masaaki Fukasawa
Papers from arXiv.org
Abstract:
We study convex risk measures describing the upper and lower bounds of a good deal bound, which is a subinterval of a no-arbitrage pricing bound. We call such a convex risk measure a good deal valuation and give a set of equivalent conditions for its existence in terms of market. A good deal valuation is characterized by several equivalent properties and in particular, we see that a convex risk measure is a good deal valuation only if it is given as a risk indifference price. An application to shortfall risk measure is given. In addition, we show that the no-free-lunch (NFL) condition is equivalent to the existence of a relevant convex risk measure which is a good deal valuation. The relevance turns out to be a condition for a good deal valuation to be reasonable. Further we investigate conditions under which any good deal valuation is relevant.
Date: 2011-08
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1108.1273 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1108.1273
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().