EconPapers    
Economics at your fingertips  
 

Large deviations and stochastic volatility with jumps: asymptotic implied volatility for affine models

Antoine Jacquier (), Martin Keller-Ressel and Aleksandar Mijatovic

Papers from arXiv.org

Abstract: Let $\sigma_t(x)$ denote the implied volatility at maturity $t$ for a strike $K=S_0 e^{xt}$, where $x\in\bbR$ and $S_0$ is the current value of the underlying. We show that $\sigma_t(x)$ has a uniform (in $x$) limit as maturity $t$ tends to infinity, given by the formula $\sigma_\infty(x)=\sqrt{2}(h^*(x)^{1/2}+(h^*(x)-x)^{1/2})$, for $x$ in some compact neighbourhood of zero in the class of affine stochastic volatility models. The function $h^*$ is the convex dual of the limiting cumulant generating function $h$ of the scaled log-spot process. We express $h$ in terms of the functional characteristics of the underlying model. The proof of the limiting formula rests on the large deviation behaviour of the scaled log-spot process as time tends to infinity. We apply our results to obtain the limiting smile for several classes of stochastic volatility models with jumps used in applications (e.g. Heston with state-independent jumps, Bates with state-dependent jumps and Barndorff-Nielsen-Shephard model).

Date: 2011-08
New Economics Papers: this item is included in nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://arxiv.org/pdf/1108.3998 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1108.3998

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1108.3998