EconPapers    
Economics at your fingertips  
 

Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation

Xi Luo

Papers from arXiv.org

Abstract: Many popular statistical models, such as factor and random effects models, give arise a certain type of covariance structures that is a summation of low rank and sparse matrices. This paper introduces a penalized approximation framework to recover such model structures from large covariance matrix estimation. We propose an estimator based on minimizing a non-likelihood loss with separable non-smooth penalty functions. This estimator is shown to recover exactly the rank and sparsity patterns of these two components, and thus partially recovers the model structures. Convergence rates under various matrix norms are also presented. To compute this estimator, we further develop a first-order iterative algorithm to solve a convex optimization problem that contains separa- ble non-smooth functions, and the algorithm is shown to produce a solution within O(1/t^2) of the optimal, after any finite t iterations. Numerical performance is illustrated using simulated data and stock portfolio selection on S&P 100.

Date: 2011-11, Revised 2013-03
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1111.1133 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1111.1133

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1111.1133