Quasi-Monte Carlo methods for the Heston model
Jan Baldeaux and
Dale Roberts
Papers from arXiv.org
Abstract:
In this paper, we discuss the application of quasi-Monte Carlo methods to the Heston model. We base our algorithms on the Broadie-Kaya algorithm, an exact simulation scheme for the Heston model. As the joint transition densities are not available in closed-form, the Linear Transformation method due to Imai and Tan, a popular and widely applicable method to improve the effectiveness of quasi-Monte Carlo methods, cannot be employed in the context of path-dependent options when the underlying price process follows the Heston model. Consequently, we tailor quasi-Monte Carlo methods directly to the Heston model. The contributions of the paper are threefold: We firstly show how to apply quasi-Monte Carlo methods in the context of the Heston model and the SVJ model, secondly that quasi-Monte Carlo methods improve on Monte Carlo methods, and thirdly how to improve the effectiveness of quasi-Monte Carlo methods by using bridge constructions tailored to the Heston and SVJ models. Finally, we provide some extensions for computing greeks, barrier options, multidimensional and multi-asset pricing, and the 3/2 model.
Date: 2012-02, Revised 2012-05
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://arxiv.org/pdf/1202.3217 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1202.3217
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().