EconPapers    
Economics at your fingertips  
 

Pricing for Large Positions in Contingent Claims

Scott Robertson

Papers from arXiv.org

Abstract: Approximations to utility indifference prices are provided for a contingent claim in the large position size limit. Results are valid for general utility functions on the real line and semi-martingale models. It is shown that as the position size approaches infinity, the utility function's decay rate for large negative wealths is the primary driver of prices. For utilities with exponential decay, one may price like an exponential investor. For utilities with a power decay, one may price like a power investor after a suitable adjustment to the rate at which the position size becomes large. In a sizable class of diffusion models, limiting indifference prices are explicitly computed for an exponential investor. Furthermore, the large claim limit is seen to endogenously arise as the hedging error for the claim vanishes.

Date: 2012-02, Revised 2013-12
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1202.4007 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1202.4007

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1202.4007