A multifractal approach towards inference in finance
Ola L{\o}vsletten and
Martin Rypdal
Papers from arXiv.org
Abstract:
We introduce tools for inference in the multifractal random walk introduced by Bacry et al. (2001). These tools include formulas for smoothing, filtering and volatility forecasting. In addition, we present methods for computing conditional densities for one- and multi-step returns. The inference techniques presented in this paper, including maximum likelihood estimation, are applied to data from the Oslo Stock Exchange, and it is observed that the volatility forecasts based on the multifractal random walk have a much richer structure than the forecasts obtained from a basic stochastic volatility model.
Date: 2012-02
New Economics Papers: this item is included in nep-ecm and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1202.5376 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1202.5376
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().