Coherent Price Systems and Uncertainty-Neutral Valuation
Patrick Bei{\ss}ner
Papers from arXiv.org
Abstract:
We consider fundamental questions of arbitrage pricing arising when the uncertainty model is given by a set of possible mutually singular probability measures. With a single probability model, essential equivalence between the absence of arbitrage and the existence of an equivalent martingale measure is a folk theorem, see Harrison and Kreps (1979). We establish a microeconomic foundation of sublinear price systems and present an extension result. In this context we introduce a prior dependent notion of marketed spaces and viable price systems. We associate this extension with a canonically altered concept of equivalent symmetric martingale measure sets, in a dynamic trading framework under absence of prior depending arbitrage. We prove the existence of such sets when volatility uncertainty is modeled by a stochastic differential equation, driven by Peng's G-Brownian motions.
Date: 2012-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1202.6632 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1202.6632
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().