# Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach

*Sait Tunc* and
*Suleyman S. Kozat*

Papers from arXiv.org

**Abstract:**
We study optimal investment in a financial market having a finite number of assets from a signal processing perspective. We investigate how an investor should distribute capital over these assets and when he should reallocate the distribution of the funds over these assets to maximize the cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using "threshold rebalanced portfolios", where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations can be readily extended to markets having more than two stocks, where these extensions are pointed out in the paper. As predicted from our derivations, we significantly improve the achieved wealth over portfolio selection algorithms from the literature on historical data sets.

**Date:** 2012-03

**New Economics Papers:** this item is included in nep-mst

**References:** View references in EconPapers View complete reference list from CitEc

**Citations:** View citations in EconPapers (1) Track citations by RSS feed

**Downloads:** (external link)

http://arxiv.org/pdf/1203.4156 Latest version (application/pdf)

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:arx:papers:1203.4156

Access Statistics for this paper

More papers in Papers from arXiv.org

Bibliographic data for series maintained by arXiv administrators ().