General Intensity Shapes in Optimal Liquidation
Olivier Gu\'eant and
Charles-Albert Lehalle
Papers from arXiv.org
Abstract:
The classical literature on optimal liquidation, rooted in Almgren-Chriss models, tackles the optimal liquidation problem using a trade-off between market impact and price risk. Therefore, it only answers the general question of the optimal liquidation rhythm. The very question of the actual way to proceed with liquidation is then rarely dealt with. Our model, that incorporates both price risk and non-execution risk, is an attempt to tackle this question using limit orders. The very general framework we propose to model liquidation generalizes the existing literature on optimal posting of limit orders. We consider a risk-adverse agent whereas the model of Bayraktar and Ludkovski only tackles the case of a risk-neutral one. We consider very general functional forms for the execution process intensity, whereas Gu\'eant et al. is restricted to exponential intensity. Eventually, we link the execution cost function of Almgren-Chriss models to the intensity function in our model, providing then a way to see Almgren-Chriss models as a limit of ours.
Date: 2012-03, Revised 2013-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://arxiv.org/pdf/1204.0148 Latest version (application/pdf)
Related works:
Journal Article: GENERAL INTENSITY SHAPES IN OPTIMAL LIQUIDATION (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1204.0148
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().