EconPapers    
Economics at your fingertips  
 

Consistent single- and multi-step sampling of multivariate arrival times: A characterization of self-chaining copulas

Damiano Brigo and Kyriakos Chourdakis

Papers from arXiv.org

Abstract: This paper deals with dependence across marginally exponentially distributed arrival times, such as default times in financial modeling or inter-failure times in reliability theory. We explore the relationship between dependence and the possibility to sample final multivariate survival in a long time-interval as a sequence of iterations of local multivariate survivals along a partition of the total time interval. We find that this is possible under a form of multivariate lack of memory that is linked to a property of the survival times copula. This property defines a "self-chaining-copula", and we show that this coincides with the extreme value copulas characterization. The self-chaining condition is satisfied by the Gumbel-Hougaard copula, a full characterization of self chaining copulas in the Archimedean family, and by the Marshall-Olkin copula. The result has important practical implications for consistent single-step and multi-step simulation of multivariate arrival times in a way that does not destroy dependency through iterations, as happens when inconsistently iterating a Gaussian copula.

Date: 2012-04, Revised 2012-04
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/1204.2090 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1204.2090

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1204.2090