EconPapers    
Economics at your fingertips  
 

Comparative and qualitative robustness for law-invariant risk measures

Volker Kr\"atschmer, Alexander Schied and Henryk Z\"ahle

Papers from arXiv.org

Abstract: When estimating the risk of a P&L from historical data or Monte Carlo simulation, the robustness of the estimate is important. We argue here that Hampel's classical notion of qualitative robustness is not suitable for risk measurement and we propose and analyze a refined notion of robustness that applies to tail-dependent law-invariant convex risk measures on Orlicz space. This concept of robustness captures the tradeoff between robustness and sensitivity and can be quantified by an index of qualitative robustness. By means of this index, we can compare various risk measures, such as distortion risk measures, in regard to their degree of robustness. Our analysis also yields results that are of independent interest such as continuity properties and consistency of estimators for risk measures, or a Skorohod representation theorem for {\psi}-weak convergence.

Date: 2012-04, Revised 2014-01
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)

Downloads: (external link)
http://arxiv.org/pdf/1204.2458 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1204.2458

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1204.2458