Economics at your fingertips  

Time-Changed Ornstein-Uhlenbeck Processes And Their Applications In Commodity Derivative Models

Lingfei Li and Vadim Linetsky

Papers from

Abstract: This paper studies subordinate Ornstein-Uhlenbeck (OU) processes, i.e., OU diffusions time changed by L\'{e}vy subordinators. We construct their sample path decomposition, show that they possess mean-reverting jumps, study their equivalent measure transformations, and the spectral representation of their transition semigroups in terms of Hermite expansions. As an application, we propose a new class of commodity models with mean-reverting jumps based on subordinate OU process. Further time changing by the integral of a CIR process plus a deterministic function of time, we induce stochastic volatility and time inhomogeneity, such as seasonality, in the models. We obtain analytical solutions for commodity futures options in terms of Hermite expansions. The models are consistent with the initial futures curve, exhibit Samuelson's maturity effect, and are flexible enough to capture a variety of implied volatility smile patterns observed in commodities futures options.

Date: 2012-04
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2022-01-04
Handle: RePEc:arx:papers:1204.3679