Study of statistical correlations in intraday and daily financial return time series
Gayatri Tilak,
Tamas Szell,
Remy Chicheportiche and
Anirban Chakraborti
Papers from arXiv.org
Abstract:
The aim of this article is to briefly review and make new studies of correlations and co-movements of stocks, so as to understand the "seasonalities" and market evolution. Using the intraday data of the CAC40, we begin by reasserting the findings of Allez and Bouchaud [New J. Phys. 13, 025010 (2011)]: the average correlation between stocks increases throughout the day. We then use multidimensional scaling (MDS) in generating maps and visualizing the dynamic evolution of the stock market during the day. We do not find any marked difference in the structure of the market during a day. Another aim is to use daily data for MDS studies, and visualize or detect specific sectors in a market and periods of crisis. We suggest that this type of visualization may be used in identifying potential pairs of stocks for "pairs trade".
Date: 2012-04
New Economics Papers: this item is included in nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1204.5103 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1204.5103
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().