Optimal multifactor trading under proportional transaction costs
Richard J. Martin
Papers from arXiv.org
Abstract:
Proportional transaction costs present difficult theoretical problems in trading algorithm design, on account of their lack of analytical tractability. The author derives a solution of DT-NT-DT form for an arbitrary model in which the the traded asset has diffusive dynamics described by one or more stochastic risk factors. The width of the NT zone is found to be, as expected, proportional to the cube root of the transaction cost. It is also proportional to the 2/3 power of the volatility of the target position, thereby causing a faster trading strategy to be buffered more than a slower one. The displacement of the middle of the buffer from the costfree position is found to be proportional to the square of the width, and hence to the 2/3 power of the transaction cost; the proportionality constant depends on the expected short-term change in position.
Date: 2012-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://arxiv.org/pdf/1204.6488 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1204.6488
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().