EconPapers    
Economics at your fingertips  
 

A multivariate piecing-together approach with an application to operational loss data

Stefan Aulbach, Verena Bayer and Michael Falk

Papers from arXiv.org

Abstract: The univariate piecing-together approach (PT) fits a univariate generalized Pareto distribution (GPD) to the upper tail of a given distribution function in a continuous manner. We propose a multivariate extension. First it is shown that an arbitrary copula is in the domain of attraction of a multivariate extreme value distribution if and only if its upper tail can be approximated by the upper tail of a multivariate GPD with uniform margins. The multivariate PT then consists of two steps: The upper tail of a given copula $C$ is cut off and substituted by a multivariate GPD copula in a continuous manner. The result is again a copula. The other step consists of the transformation of each margin of this new copula by a given univariate distribution function. This provides, altogether, a multivariate distribution function with prescribed margins whose copula coincides in its central part with $C$ and in its upper tail with a GPD copula. When applied to data, this approach also enables the evaluation of a wide range of rational scenarios for the upper tail of the underlying distribution function in the multivariate case. We apply this approach to operational loss data in order to evaluate the range of operational risk.

Date: 2012-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Published in Bernoulli 2012, Vol. 18, No. 2, 455-475

Downloads: (external link)
http://arxiv.org/pdf/1205.1617 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1205.1617

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1205.1617