New solvable stochastic volatility models for pricing volatility derivatives
Andrey Itkin (aitkin@nyu.edu)
Papers from arXiv.org
Abstract:
Classical solvable stochastic volatility models (SVM) use a CEV process for instantaneous variance where the CEV parameter $\gamma$ takes just few values: 0 - the Ornstein-Uhlenbeck process, 1/2 - the Heston (or square root) process, 1- GARCH, and 3/2 - the 3/2 model. Some other models were discovered in \cite{Labordere2009} by making connection between stochastic volatility and solvable diffusion processes in quantum mechanics. In particular, he used to build a bridge between solvable (super)potentials (the Natanzon (super)potentials, which allow reduction of a Schr\"{o}dinger equation to a Gauss confluent hypergeometric equation) and existing SVM. In this paper we discuss another approach to extend the class of solvable SVM in terms of hypergeometric functions. Thus obtained new models could be useful for pricing volatility derivatives (variance and volatility swaps, moment swaps).
Date: 2012-05, Revised 2012-06
New Economics Papers: this item is included in nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1205.3550 Latest version (application/pdf)
Related works:
Journal Article: New solvable stochastic volatility models for pricing volatility derivatives (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1205.3550
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).