Calibration of optimal execution of financial transactions in the presence of transient market impact
Enzo Busseti and
Fabrizio Lillo
Papers from arXiv.org
Abstract:
Trading large volumes of a financial asset in order driven markets requires the use of algorithmic execution dividing the volume in many transactions in order to minimize costs due to market impact. A proper design of an optimal execution strategy strongly depends on a careful modeling of market impact, i.e. how the price reacts to trades. In this paper we consider a recently introduced market impact model (Bouchaud et al., 2004), which has the property of describing both the volume and the temporal dependence of price change due to trading. We show how this model can be used to describe price impact also in aggregated trade time or in real time. We then solve analytically and calibrate with real data the optimal execution problem both for risk neutral and for risk averse investors and we derive an efficient frontier of optimal execution. When we include spread costs the problem must be solved numerically and we show that the introduction of such costs regularizes the solution.
Date: 2012-06
New Economics Papers: this item is included in nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://arxiv.org/pdf/1206.0682 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1206.0682
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().